计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

谈如何培养学生的解题能力

2014-02-25 01:18
导读:物理论文毕业论文,谈如何培养学生的解题能力样式参考,免费教你怎么写,格式要求,科教论文网提供大量范文样本:如何培养的解题能力,是一个较复杂的问题。从理论上看,解题能力涉及到逻辑
如何培养的解题能力,是一个较复杂的问题。从理论上看,解题能力涉及到逻辑学心理学教育学等学科的问题。从内容上看,解题能力包括对应用题、文字题、计算题等各类问题处理的能力。从小解题的行为实际看,小解题主要存在的问题有:一是难以养成思维习惯,常常盲目解题;二是任务观点严重,解题不求灵活简洁;三是马虎草率,错误百出。心理学认为:智力的核心是思维能力。从素质教育的观点来看,发展思维、提高智力,是提高素质的重要内容。要提高的解题能力,首先要提高的智力,发展他们的思维。

下面从发展的思维角度和的解题实际出发,谈谈如何培养的解题能力。

一、一例多说,养成解题的思维习惯

语言和思维密切相关,语言是思维的外壳,也是思维的工具。语言可以促进思维的发展,反过来,良好的逻辑思维,又会引导出准确、流畅而又周密的语言。在教学实践中,不少老师只强调“怎样解题”,而忽视了“如何说题(说题意、说思路、说解法、说检验等)”。看似这是重视解题,实则这是忽略解题能力的培养。由于缺少对解题的思维习惯、思维品质的培养,的解题能力,只囿于题海战术、死记硬背的机械记忆中,这与当前的素质教育格格不入。

另外,从解题的实际表现看,解题的错误,一般是由于缺乏细致、周密的逻辑思考和分析。特别是当作业量稍多时,这种表现更为突出。从教师教学实际看,教师为了强化对解题思路的训练,往往要求在作业本上写出分析思路图,或画出线段图。但这项,对于小来说,一方面难度比较大,另一方面因费时多,持久性不够,往往收效并不大。笔者认为加强课堂教学中的“说题训练”,即采用“顺逆说”、“转换说”和“辩论说”等几种训练形式,养成解题的思维习惯,从而培养的解题能力。
(科教作文网http://zw.ΝsΕAc.com发布)


1.顺逆说。

每解答一道应用题时,不必急于去求答案,而要让分别进行顺思考和逆思考,把解题思路及计划说出来。比如解答“三年级种树25棵,四年级种树是三年级的2倍,四年级比三年级多种几棵?”先让用综合法从条件到问题依次说出思路,再让用分析法从问题到条件说出思路。顺逆分别说清思路后,再列出算式“25×2-25”。如果,在说的过程中,语言还不够流畅,思路还不够清晰,还要再让看算式“25×2-25”,再进行第二次“顺逆说”:先让说第一步“25×2”表示什么?再让说第二步“25×2-25”表示什么?最后先说第二步、再说第一步。在解答文字题时,也可进行顺逆说的训练。如“3个1/5比2个1/4多多少?列出算式“1/5×3-1/4×2”后,让根据算式,说出“1/5×3-1/4×2”的意义,再把说出的意义与原题对照,看看是否一致?如不一致,则要重新分析,认真检查,直到说出的意义与原题一致为止。

2.转换说。

对于题中某一个条件或问题,要引导善于运用转换的思想,说成与其内容等价的另一种表达形式,使加深理解,从而丰富解题方法,提高解题能力。如已知“A与B的比是3∶5”,可引导联想说出:(1)B与A的比是5∶3;(2)A是B的3/5;(3)B是A的5/3;(4)A比B少2/5;(5)B比A多2/5;(6)A是3份,B是5份,一共是8份,等等。这样,解题思路就会开阔,方法就会灵活多样,从而化难为易。

3.辩论说。

鼓励有理有据的自由争辩,有利于培养独立思考和勇于发表不同见解的思维品质,寻找到独特的解题方法。有一次,一位老师教学解答圆面积一题时,老师问:“计算圆面积要知道什么条件才能进行计算?”多数回答“必须知道半径,才能求出圆面积。”但有一个举手表示不同意,认为“知道周长或直径,同样可以计算圆面积。”对这个的回答,老师一方面作了肯定,另一方面要他和持不同意见的同学进行辩论。这样,双方经过几轮辩论后,使这位认识到“已知周长或直径,最终还是要先求出半径”的道理。另外,也使大部分同学明白了“不光只有知道半径,才能计算圆面积”的道理。 (科教范文网 fw.nseac.com编辑发布)

二、多向探索,培养解题的灵活性

求异思维是一种创造性思维。它要求凭借自己的知识水平能力,对某一问题从不同的角度,不同的方位去思考,创造性地解决问题。而小的思维是以具体形象思维为主,容易产生消极的思维定势,造成一些机械思维模式,干扰解题的准确性和灵活性。有的常常将题中的两个数据随意连接,而忽视其逻辑意义。如“小方和小圆各有同样多的水果糖,小方吃了5粒,小圆吃了6粒,剩下的谁多?”由于受数值大小这一表象的干扰,的思维定势集中在“6>5”上,容易误判断为“小圆剩下的多”。为了排除类似的消极思维定势的干扰,在解题中,要努力创造条件,引导从各个角度去分析思考问题,发展的求异思维,使其创造性地解决问题。通常运用的方法有“一题多问”、“一题多解”和“一题多变”。

1.一题多问。

同一道题,同样的条件,从不同的角度出发,可以提出不同的问题。如解答“五一班有45人。女生占4/9,女生有多少人?”这本来是一道很简单的题目。教学中,老师往往会因很容易解答,而一晃而过,忽视发散思维的训练。对于这样的题型,老师要执意求新,变换提出新的问题。如再提出如下问题:(1)男生有多少人?(2)全班有多少人?(3)男生比女生多多少人?(4)男生是女生的几倍?(5)女生是男生的几分之几?等等。这样,可以起到“以一当十”的教学效果。像同一道题,老师还可以从分析上多提问,从解法上多提问,从检验上多提问,进行多问启思训练,培养思维的灵活性。

2.一题多解。

在解题时,要经常注意引导从不同的方面,探求解题途径,以求最佳解法。

例如“某村计划修一条长150米的路,前3天完成了计划的20%,照这样计算,完成这条路还需多少天?”首先老师要用多种方法解。在没有工程问题时,解法一般集中在以下三种上:①(150-150×20%)÷(150×20%÷3)=12(天);②150÷(150×20%÷3)-3=12(天);③150×(1-20%)÷(150×20%÷3)=12(天)。

您可以访问中国科教评价网(www.NsEac.com)查看更多相关的文章。



针对这些解法,老师要善于引导比较三种方法的异同点,总结出“三种方法中都运用了全程150米”这一条件的共性。针对这一共性,老师可打破思维定势,启迪的新思维:“假如把150米当作一条路(用1来表示),还可以怎样解答?”这一点拨,很容易发现如下解法:④3×[(1-20%)÷20%]=12(天);⑤1÷(20%÷3)-3=12(天);⑥3÷20%-3=12(天)。

综上六种解法,显然后三种解法(尤其是解法⑥),列式简洁,想象丰富,充分可以显示思维的灵活性。

3.一题多变。

小解题时,往往受解题动机的影响,因局部感知而干扰整体的认识。例如:“某商厦共有6层,每两层间的板梯长5米,从1楼到6楼共要走多少米?”往往由于“每两层5米”和“6层”与的解题动机发生共鸣,忽视了“6层只有5段间距”这一特点,而容易得出“5×6”的错解。要消除类似的干扰,就必须进行一些一题多变的训练。

针对解题模式的干扰进行变题训练。如了工程问题后,求合做时间,容易形成这样一种解题模式“1÷(1/A+1/B)”。我们可将条件中的时间改变成分数形式。如“一项,甲独做1/2小时完成,乙独做1/4小时完成,如两人合做要多少小时完成?”如老师不提醒,绝大多数会把“1/2小时”和“1/4小时”当作工效,仍然列出算式“1÷(1/2+1/4)”来解答(实践统计,第1次这样的错误率在75%以上)。又如学过等分除法应用题后,往往见“分成几份”就“用除法计算”。在掌握等份除法计算方法后,也要注意变题训练。如设计类似题“6粒水果糖分成3份,最少的1份是多少粒?”可淡化消极的“6÷3”思维定势的干扰。因为“6÷3”计算错了,其实最少的1份是1粒(题中并没有要求平均分)。 (科教论文网 lw.NsEac.com编辑整理)

通常,教学中的变条件、变问题、条件和问题的互换等,都是一题多变的好形式,但是,变题训练要掌握一个原则,就是要在较牢固的掌握法则、公式的基础上,进行变题形练。否则,将淡化思维定势的积极作用,不利于牢固地掌握知识。

三、联系对比,提高解题的准确率

为了减少的解题错误,提高解题的准确率,除加强估算和检验外,通常较有效的办法是要善于联系对比,让在比较中认识、在比较中区别、在比较中理解、在比较中提高。常用的联系比较方法有:

1.联系生活实际对比。

对于一些农业生产上的株距、行距,工业上的产值、工效,商业上的成本、利润等,缺乏生活经验,难以产生共鸣;对于一些较大数字的四则运算,解答毅力不强,容易产生畏难情绪。加之,有些教师讲到应用题,便说应用题怎样重要,如何难学,上课要认真呀……说到计算题,又说怎样容易出错,计算时要怎样细心,否则……看似老师提醒重视,实则给增加了心理压力,背上了思想包袱。其实,只要把数学题与的生活实际联系起来进行对比,解题并不是一件很难的事情。

对于难理解的题,要增添一些与之数量关系相同,能贴近生活的实例,先解熟悉的题,再解生疏的题。如要解答:“某户要种一块300平方米的果树,行距2米、棵距1米,种完这块地要多少棵树苗?”可首先补充另一题:“在一块300平方米的操场上站队做操,每两排纵队之间相距2米,前后两人之间相距1米,按这样站队,站满这个操场一共要多少人?”因两题思路相通,解法相同,先解贴近生活的补充题,再解原题,迁移自然,默化易成。

2.联系正误对比。
(科教作文网http://zw.ΝsΕac.cOM编辑)


有比较才有鉴别,解题的错误,往往错在认识不清、感知模糊、理解肤浅上,用给出正确答案(或算式)和错误答案(或算式)的对比如正误分析对比、正误解法对比等,都有利于加强辩证思维训练,有利于提高解题能力。通常的选择题就是很好的训练形式。

3.联系题型对比。

在小学数学题型中,归纳起来,不外乎是概念题、计算题、文字题、应用题和图式题等几大类。像计算式题、文字题、应用题、图式题大都是实际生活中的例子,只是用四种不同的描述形式表达而已。比如“6个苹果吃了2个,还有几个?”除用这种“应用题”的形式描述外,还可以用最简单的算式“6-2=?”来描述,也可以用一句话“6减2的差是多少?”或一幅线段图(或实物图)来描述。根据这种知识内在的联系特点,在教学中,要善于把各种描述的形式,联系起来,进行训练,达到由此及彼,由里及外,融汇贯通和举一反三的效果。

培养解题能力的途径和方法很多,但无论哪种途径和方法,最根本的、相通的是离不开思维的训练。
 

作者:陈宇翔 
    上一篇:谈幻灯投影在小学数学教学中的作用 下一篇:没有了