论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
因此,作为教师,在统计课程实施的过程中,不仅仅需要知道如何去计算,还需要知道之所以这样计算的道理。只有这样,在讲课的时候才可能心里更有底,才可能根据学生的反应随时调节教学策略。再比如统计图表,是为了更直观地表达数据,这也是数据整理的一种形式。根据我们所要研究问题的不同,表达方式也可以有所不同。
(三)统计学研究方法的本质
问:严士健先生认为,统计学的研究方法与传统数学的研究方法有一个本质上的不同:统计学的研究方法是基于归纳,而传统数学是基于演绎。
▲ 史教授:我想,这是从思辨的角度来考虑的。一般来说,推理分为演绎和归纳。上面已经谈到,传统数学在本质上研究的问题是确定性的,基础是定义和假设,遵循约定原则进行严格的计算或者推理,因此更多的是演绎;统计学在本质上研究的问题是随机的,是非确定性的,通过较多的数据进行推断,也就是通过许多的个别来推断一般,可以认为是一种归纳。但是,正如我在上面也谈到过的那样,在许多情况下,哲学思考后的数学表达也是严格依赖于演绎的。
二、中小学统计课程设计的核心问题
(一)统计与概率课程设计的总体构想
问:《标准》《标准》指《全日制义务教育数学课程标准(实验稿)》。在总体目标中提出,要使学生能够“经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题;经历运用数据描述信息、作出推断的过程,发展统计观念”。在课程实施中,许多在教学一线的教师,甚至学科教学的专家都感到统计的内容安排不好把握,甚至对《标准》关于统计的设计提出了一些质疑。
作为统计学家,你认为如何设计中小学各学段的统计课程内容更合理呢?
▲ 史教授:对中小学统计课程内容的设计,我没有进行过专门的研究。我想,在讨论这个问题之前,首先要清楚的问题是,除了知识之外,统计学的教育功能是什么?或者说,统计学的教育价值是什么?
问:在中小学阶段,统计学的教育价值是什么呢?
▲ 史教授:我在上面都已经谈到了,现在再总结一下。主要有三点。首先,养成通过数据来分析问题的习惯。其实质是通过事实来分析问题,当遇到问题时,应当去调查研究,应当去收集数据,在此基础上进行的推断才可能客观地反映实际背景。其次,建立随机的概念。有些事情可能发生,有些事情可能不发生,这在日常生活中是大量存在的。即便如此,只要我们掌握的信息多了,也能够合理地推断实际背景。第三,学习如何去判断事情的主要因素。我已经谈到,统计学能够在一堆看似杂乱无章的数据中提炼信息、寻找规律,这就需要抓主要因素。比如我刚才谈到的股票市场的例子,核心企业就是主要因素。在统计学中,可能还有其他方面的教育价值,但在中小学阶段统计的教育价值主要就是这三点。
问:如何通过这三点来说明中小学统计内容的课程、教学设计呢?
▲史教授:教育价值,或者说教育功能是进行课程、教学设计的灵魂,是课程、教学设计的核心目标。如果中小学统计学课程、教学设计的核心目标是培养学生“通过数据来分析问题”,课程、教学设计的总体框架就应当是,体现从收集数据到分析推断的全过程,并以这个过程为主线,抓住要点,循序渐进。我们以小学统计为例, 在第一学段(1~3年级),可以侧重于统计直觉的培养。首先,应该对数有一定的理解和感悟,这主要是数的大小的比较,以及对于数的分类。后者对于学习现代数学和现代统计学都是重要的,但是过去我们很少接触。比如,我们可以让学生“建立一个原则,在这个原则下给全班同学分类”。显然分类方法是多种多样的,这个原则可以是男女、出生月份、家庭区域等等。再比如,把全国各省的GDP统计数据提供给学生,让学生根据GDP的多少对各个省进行分类,并讲出分类的标准。其实,这里也涉及抓主要因素的问题,分类的标准就是抓主要因素。
其次,学习一些抽样的方法,最好针对身边的事情。比如,同学们的身高、脚的大小、睡觉的时间等等。在这其中可以得到一些趣味性的结果。可以学习平均数,也可以学习统计表、直方图等等。
最后,可以学习分层抽样,并且通过比较,领会分层抽样的好处。因为有了数据的分类的基础,学习分层抽样就比较自然了。
在第二学段(4~6年级),可以有一些具有背景的理性的思考。比如,再进行学生身高的调查,然后与以前的数据比较,看身高的变化,其中可以得到许多有趣的学习:可以作直方图或折线图,然后比较;可以分类比较;可以通过斜率来分析变化率;甚至可以通过变化率来预测未来。除此之外,还要进行社会调查,比如市场物价调查,评估物价的上升还是低落,这里也涉及抓住主要因素的问题。
在这个阶段,可以渗透随机和概率的思想,分清楚有些事情可以直接判断可能性的大小,有些事情则需要调查估计可能性的大小。可以涉及加权平均。中位数和众数的学习一定要结合具体的案例进行学习,并且与平均数比较,这是因为中位数和众数在日常生活中用得不多。
最好有一个案例能够贯穿小学统计教学的全过程,比如我刚才谈到的身高的调查分析,让学生积累调查记录,逐年比较,从而对统计的学习有一个整体的了解。
(二)处理统计与概率关系的策略
问:在中小学数学课程教学中,应当如何处理统计与概率的关系?
▲ 史教授:概率论与统计学有很大的差别。虽然二者都研究随机现象,但概率论的研究基础还是定义和假设,这与传统数学很相似,而统计学的研究基础是数据,它的研究要借助概率论的结果。比如我刚讲到的“分清楚有些事情可以直接判断可能性的大小,有些事情则需要调查估计可能性的大小”,前者是概率计算,而后者是统计推断。在小学阶段,概率所涉及的形式化数学知识很少,只需要很好地理解分数。我曾经在前面的访谈中讲到,真分数有两个含义:一个是0与1之间的实数,一个是比率。后者可以理解为概率。如果再懂得一些代数知识,就能够理解概率中的逻辑运算和计算的基本原理。
中学的统计教学也涉及分数,也是借助比率的含义,也是表示事件发生可能性的大小。但是,在统计的计算中,分数是基于样本计算出来的,是与样本量的大小有关系的,在计算的过程中必须注意到这一点。比如,希望了解学生对某一项活动的支持率,一班有50人,10人赞同,支持率为;二班有45人,15人赞同,支持率为,那么总体支持率是否为(+)÷2=呢?不是的。应当考虑样本量的比例和,则总体支持率为,大约为。这就是加权平均,权为样本量的比例。当然也可以用来进行计算。两个计算都是合理的,因为都考虑到了样本量。但是前一个式子已经不需要样本的具体数据了,因而是更为深刻的。
从知识的角度来看,统计学的研究需要以概率论为基础。但从认知的角度看,统计比概率更为具体,概念和定义用得更少,因此,在小学阶段应当以学习统计为主,到初中阶段可以学习一些概率的初步知识,但是仍然要注意结合生活背景和实验背景,对概念的表达要以描述性为主,不要出现太多的专业术语。我想,概率的全面学习安排在高中阶段更为合适。
(三)统计与现代信息技术的整合
问:从课程改革实验区的情况看,计算器、计算机的日益普及为学生学习统计与概率提供了更加方便的工具。你是如何看待计算机在统计课程教学中的作用的呢?
▲ 史教授:如我在上面谈到的那样,中小学统计的课程教学应当是一种直观的教学。什么是直观的教学呢?就是更多地依赖于学生的经验,特别是他们曾经亲身经历过的经验,从中去感悟、分析、理解、抽象,最后形成概念,学会判断。反复重复这个过程,直觉就建立起来了。直觉在本质上是不借助思维和理智的判断。而我们现在的教学,往往是从抽象开始的,没有重视从经验开始的前期过程,因而很难培养出学生的直觉。
在这个教学过程中,利用计算器、计算机是有益的,这不仅仅是因为计算便捷,更重要的是摆脱了严格意义下的数学计算,有利于培养学生对数据的直观感悟。
现代统计学是离不开计算机的,除了计算,更重要的是模拟实验。我不知道是不是可以在中小学阶段进行这种尝试。在一些经验的基础上,我们不一定每一次都去做非常实际的实验,而是可以在计算机上模拟实验,一方面可以省时省力,一方面可以把教学变得更富有探究性和趣味性。比如,我们可以设计一个袋子,里面有一定数量的白球和红球,让计算机来模拟摸球的实验,反复实验,看看模拟概率与计算概率的关系;还可以设计一个已知均值的总体,产生随机数来分析样本平均数与总体均值的关系;也可以模拟市场调查;等等。
共2页: 2
论文出处(作者):