计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

基于极值理论和贝叶斯估计的金融风险度量

2017-08-16 05:23
导读:毕业论文范文毕业论文,基于极值理论和贝叶斯估计的金融风险度量论文样本,在线游览或下载,科教论文网海量论文供你参考:     【关键词】金融风险 极值理论 贝叶斯 MCMC   【摘要】
  

  【关键词】金融风险 极值理论 贝叶斯 MCMC

  【摘要】本文研究用Bayes估计计算金融风险值,帮助投资者依据观测数据和信息对风险模型进行调整,使得风险模型能够更准确地反映出金融市场的风险状况,据此做出更加正确的投资决策。

  近年来VaR和ES已经成为金融界广泛应用的风险测度方法。VaR(Value atRisk)即在一定的概率水平下,证券组合在未来特定一段时间内的最大可能损失。VaR的优点是将不同的市场因子、不同市场的风险集成为一个数,能准确测量由不同风险来源及其相互作用而产生的潜在损失,适应了金融市场发展的动态性、复杂性和整合性的趋势。但VaR本身存在一些不足,一是没有考虑到尾部风险,即损失超过VaR值的风险;其次,不是一致的风险度量下具。Aitzner(1997)提出了Expected Shortfall(ES)的概念, ES度量损失超过VaR的损失期望信度,它是一致的风险度量下具。目前国内大多数投资者还是直接投资于股市,而个股的波动性远远大于股指的波动性,因此,极值VaR和ES对于个股的研究是很有意义的,本文尝试使用POT模型来估计我国股市中单个股票的VaR和ES。

  1 基于POT模型的VaR和ES

  极值理论是测量极端市场条件下风险损失的一种常用方法,它具有超越样本数据的估计能力,并可以准确地描述分布尾部的分位数,这些对于精确计算VaR和ES都是非常有帮助的。POT(peaks over threshold)模型是极值理论中最有用的模型之一,它对所有超过某一充分大阈值的样本数据进行建模,因而有效地使用了有限的极端观测值。本文使用基于广义帕累托分布的参数POT模型,在此基础上估计出损失分布相应的分位数,以计算VaR和ES。

  通常的GPD模型参数估计方法有极大似然估计法、矩估计和概率加权矩方法。已有的研究证明极大似然法在大样本条件下比其它方法更加有效;矩估计和概率加权矩方法统计计算,但仅在ζ<0. 5时适用,因为GPD分布的方差仅在此时存在。同样,极大似然估计法仅在ζ>-1时适用。此外,基于经典统计学的VaR估计方法是一种向后看的方法一对未来的损失完全基于历史数据,并假定变量间过去的关系在未来保持不变,显然,许多情况下,这与人们的实际经验是有出入的,市场未来未必重复过去,即使观测数据完全精确,也无法保证将来不会发生过去从未发生过的、令人措手不及的事情。因此,本文采用一种更为有效的方法,贝叶斯估计,只对有代表性的厚尾分布(ζ>0 )的情形进行讨论,此时β>0, 令 ,设β,τ相互独立,并有以下先验分布,即ζ~Pareto(a, c) ;τ~Gamma(a, b),其中a、c为帕累托分布的参数, a、b为伽玛分布的参数。根据贝叶斯法则,ζ和τ的后验分布为:

  f(ζ,τ|x)∝L(x |ζ,τ)f(ζ)f(τ)(2)

  其中, L(x|ζ,τ)为似然函数,样本信息同过似然函数进入估计的过程。对以上后验分布,无法直接估计出其参数。为此,借助马尔科夫蒙特卡洛模拟方法(MCMC)来计算E(ζ|x)和E(τ|x)。MCMC的基本思想是模拟一条马尔科夫链的样本路径,链的状态空间是被估计参数的值,链的极限分布为被估计参数的贝叶斯后验分布。在充分迭代后,马尔科夫链收敛于一个平稳的目标分布,而不依赖于原始状态。将前面测试期阶段的n个状态滤去,剩下的链将作为目标后验分布的样本。Gibbs抽样是最简单、应用最广泛的MCMC方法,在实际应用中使用非常方便。上述的后验分布的构造和MCMC模拟都是基于一个较为成熟的软件W inbugs上实现的。

  2 实证分析

  2. 1 数据描述

  我过证券市场10多年来,交易制度发生了很大的变化,特别是1996年12月16日以后实行了涨跌停板制度后,股价行为表现出明显的阶段性,这一点已为国内诸多学者的相关研究所证实。因此,本文选取1996年12月16日至2007年1月9日的上证综合指数(SHCI)日收盘价为研究对象,对其收益率的损失序列建模。SHCI的基本统计特质征:均值为-0. 000454、标准差为0.016543;偏度为0. 332547,其具有左偏性;峰度为8. 186027,大于3。所以其分布是有偏的、有峰的。同时其J-B统计量为3103. 974,相伴概率为0,拒绝分布为正态分布的原假设。

    上一篇:创业投资外资模式的研究范文 下一篇:没有了