莱布尼茨数学思想的统一性(3)
2013-07-12 01:31
导读:([10],p.392)由此也可看出莱布尼茨研究微积分的代数出发点,而不是几何出发点。(如[7],p.101) 为解决求积问题,莱布尼茨
([10],p.392)由此也可看出莱布尼茨研究微积分的代数出发点,而不是几何出发点。(如[7],p.101)
为解决求积问题,莱布尼茨把流动纵坐标是y的平面曲线下的曲边梯形的面积用符号y表示。这样,曲线的纵坐标就与面积变量明显地联系起来。过了几年,他便用“sydx”表示面积,“∫”是“Sum(和)”的第一个字母“S”的拉长。
在求量的差即微分方面,莱布尼茨先是引进了符号“x/d”表示x的微分,意思是求“差”要关系到量的同次的降低,并且他还认为,如果同时出现不同阶的微分,则只留下最低阶的,而把所有高阶的微分舍去。至于这样做的理由,莱布尼茨虽提供了多种解释,但都不充分,其实毋宁说他是当作“公理”来使用的。后来,他将“x/d”改为“dx”,一直沿用至今。
从上述思路出发,莱布尼茨给出了微积分的基本公式:
d(x±y)=dx±dy (1)
d(xy)=xdy+ydx (2)
d(x/y)=ydx-xdy/y[2] (3)
对于(2),他的推导是,令x、y分别成为x+dx、y+dy,则
(x+dx)(y+dy)=xdy+ydx+dxdy+xy于是 d(xy)=(x+dx)(y+dy)-xy=xdy+ydx+dxdy
dxdy是比xdy+ydx高一阶的无限小量,可以舍去,所以 d(xy)=xdy+ydx
用同样的方法也可推导出公式(1)和(3)。
有了微分法的基本运算律,对整指数的幂函数x[n]就有dx[n]=nx[n-1]。又由于求和是求差的逆运算,所以还有∫x[n]dx=1/n+1x[n+1] (n≠-1)。这两个公式虽只对n是正整数情况而言,但莱布尼茨却断然宣布它们当n取其它数值时仍然成立。接着,莱布尼茨陆续地推导出指数和对数等超越函数的微分公式。
您可以访问中国科教评价网(www.NsEac.com)查看更多相关的文章。
莱布尼茨的微积分算法是在解决几何和物理问题的过程中建立和完善起来的。他边建立新算法,边用这种算法解决当时物理学与几何学提出的疑难问题,有时还用老方法来解决问题以检验新方法的正确性。除了切线问题、极值问题、曲率问题、求积问题等几何问题,他还曾用新方法证明了光的折射定律。所有这些都显示了新算法比传统方法更加优越。
除了以上成果,莱布尼茨在微积分方面的具体研究还有:(1)复合函数的微分法则;(2)弧微分法则ds=根号下dx[,2]+dy[,2];(3)对数函数和指数函数的微分法则;(4)在积分号下对参变量求微分的方法;(5)曲线绕x轴旋转所成的旋转体体积公式V=π∫y[2]dx;(6)求切线、求最大值最小值以及求拐点的方法;(7)讨论曲率,密切圆和包络理论。([8],pp.394~395)