计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

莱布尼茨数学思想的统一性(4)

2013-07-12 01:31
导读:莱布尼茨微积分研究的背景与当时整个西欧的数学家们是一致的,他的工作基础也是建立在对无穷小的分析上。因此,此后很长一段时间,人们一直把微积

莱布尼茨微积分研究的背景与当时整个西欧的数学家们是一致的,他的工作基础也是建立在对无穷小的分析上。因此,此后很长一段时间,人们一直把微积分叫无穷小分析。由于莱布尼茨从有限差值开始无穷小的运算,因而他最初曾试图将实无穷小代之以与其成比例的有限数量,即不用dx、dy本身,而用它们的比值dy/dx。他以为把dx、dy看成有限量,问题就解决了。但是,比值dy/dx的获得同样需要说清dx、dy两个量本身的实际情况,而不能有半点含糊。于是,莱布尼茨提出用“充分大”和“充分小”去代替无穷大和无穷小。他解释说:“我们可以不用无穷大、无穷小,而用充分大和充分小的量,使得误差小于给定的误差限度,所以我们和阿基米德方式的不同之处仅仅在于表达方面,而我们的表达更为直接,更适合于发明家的艺术。”([8],p.401)为了更好地说明这一点,他不得不诉诸于感性的直观——物理或几何模型,用现实事物中量的不同层次的相对性解释无穷大和无穷小。所以有人说,莱布尼茨其实是半个理性主义,因为他在理性困厄之时,不得不借助经验。([9],p.130)例如,他认为点同直线不能相比,所以点加到直线上从直线上去掉等于不加也不减。于是,“当我们谈到有不同阶的无穷大与无穷小时,就象对恒星的距离而言,把太阳看成一个点;对地球半径而言,把普通的球看做一个点。这样,恒星的距离对于普通球的半径而言是无穷的无穷大,或无穷倍的无穷大。”[10]而“如果你不承认无限长、无限短线段具有形而上学的严密性,也不承认它们是实在的东西,那么你一定可以把它们当作一种能够缩短论证的思想的东西来使用,正如在普通分析中使用虚根一样,……老实说,我不十分相信除了把无限大、无限小看作理想的东西,看作有根据的假设,还有什么必要去考察他们,”甚至“我不相信确有无限大量和无限小量存在,它们只是虚构,但是对于缩短论证和在一般叙述中是有用的虚构。”[(10)]可见,莱布尼茨主要是把微积分当作了求得正确结果的一种方法,只要按这个方法去做,就能得出正确的结果,而不必关心基本概念怎样。事实上,莱布尼茨对于微积分基础的这种看似冒失的大胆相信态度,反倒可能促进了微积分及其应用的迅速发展。([11],p.359)

  三、单子论: 理性的僭越


莱布尼茨是古往今来唯一的一位驰骋于数学思想的两个宽广的、对偶的领域——分析与组合或连续和离散领域的数学大师,而且在每个领域都表现了人类的最高能力。([2],p.119)这除了他的已为人所周知的天赋和勤勉以外,就数学内部而言,最合理的解释应该是莱布尼茨数学研究的代数出发点和哲学研究方式。他的“通用语言”工作,今天看来实际上是在创立一种普遍适用的逻辑代数(数学)。而在微积分上,尽管他赞同那种认为无穷小需要一个几何学基础的偏见,但是他达到微积分的途径却是代数的和哲学的,而不是几何的。莱布尼茨的发现起因于寻找一个无限聚敛数列或交错级数1/1-1/3+1/5-1/7+……之和(=π/4)的方法(最后莱布尼茨给出了自己满意的最一般的公式:arctgx=x=x[,3]/3+x[,5]/5+x[,7]/c+……)。在莱布尼茨看来:微分学就是确定这种数列极限的一种方法,所以他才习惯于将无穷小等视作有限量;积分学则是发现数列总和的一种方法,因而他的积分总是今天所说的定积分,而不是牛顿的不定积分。([6],p.219)在莱布尼茨时代,几何学由于笛卡尔和费尔马杰出的工作而倍受数学界欢迎,莱布尼茨抱着“通用数学”的信念,企图运用几何方法解决代数问题,结果却将自己代数的观点导入几何学,从而做出了对“天地间通用的微积分”的发现。([12],p.170)因此,为了深入追索莱布尼茨数学创造的思想渊薮,必须诉诸他的数学观及所接受的研究传统。
莱布尼茨最早的思想活动是在哲学领域,这与其父作为一个道德哲学教授的影响有关。少年莱布尼茨读了不少古典哲学著作,入大学后又首先接受了雅可布·托马修斯教授严格的经院哲学训练。他的毕业论文De principio individui(《论个体原则》)就是维护经院哲学中唯名论派观点的。尽管莱布尼茨后来到巴黎去认真学习和研究数学,并且首先在数学上有了划时代的贡献,但作为其全部科学研究起点的思维观念与思想传统却是在早年打下的,
上一篇:谈“怎样学好平面几何证明” 下一篇:没有了