“算经十书”数学思想简论(3)
2013-07-14 01:18
导读:从而确立了中国传统数学理论体系。刘徽的数学思想和方法,对后世影响极深。如王孝通在《上缉古算经表》中云:徽思极毫芒,触类增长。说刘徽的思想
从而确立了中国传统数学理论体系。刘徽的数学思想和方法,对后世影响极深。如王孝通在《上缉古算经表》中云:“徽思极毫芒,触类增长。”说刘徽的思想方法是“一时独步”。而刘徽对自己所接触和研究的数学,是十分讲究明确的思想依据的。“算经十书”中有二部与他密切相关。《九章算术》由于有了刘徽注,从此中国传统数学有了自己的理论体系;他在注《九章算术》时补撰“重差”,其单行本即《海岛算经》。刘徽注《九章算术》时,十分讲究数理之道要有明确的思想依据。在《九章算术》注原序中,刘徽说:“徽幼习《九章》,长再详览。观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作注。事类相推,各有攸归,故枝条虽分而同本干者,知发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。”在“圆田术”注中,刘徽写道:“不有明据,辩之斯难”,于是,他在创造“割圆术”的同时,还告诉人们此种创造是有依据的:“谨接图验,更造密率。恐空设法,数昧而难譬。故置诸检括,谨详其记注焉。”在“开立圆”(由球的体积以开立方的方法求其直径)注中,刘徽创立了“牟合方盖”理论,他不仅介绍了有关方法,而且还言明思想依据,“互相通补,……观立方之内,盒盖之外,虽衰杀有渐,而多少不掩。判合总结,方圆相缠,浓纤诡互,不可等正。”但他又担心依据不足,惟恐理法相违,专门作了交待,以待后人获得更严密的依据:“欲陋形措意,惧失正理。敢不阙疑,以俟能言者”。从中我们不仅见到先哲们对探讨数理的思想依据的重视,也深深领悟到他们治学严谨的高尚风范。在谈到将割圆术作为解决有关极限问题的工具时,刘徽也阐述了其思想依据:“数而求穷之者,谓以情推,不用算筹”(“阳马术”注)。意思是说,数学中凡解决有关无穷之类问题时,不必用算筹去计算,应当用数学思想去把握。再拿《海岛算经》来说,刘徽为什么要写《海岛算经》呢?其思想依据是什么?在《九章算术》刘徽注原序中,刘徽清楚的说明“苍等为术犹未足以博尽群数也”,于是“辄造重差,并为注解,以究古人之意,缀于句股之下”,“以阐世术之美”。而造“重差”此术的思路是:要测量不可到达目的物的高和远时,一次测望不够,于是采用二次测望、三次测望、四次测望,即“度高者重表,测深者累矩”(“重表”或“累矩”就是用表或矩测望两次)、“孤离者三望”、“离而又旁求者四望”。更为深刻的是,刘徽并不是勉强、被动地去考究数学知识之思想依据的,他认为数学思想与数学知识之间本身具有非常紧密的联系,他用庖丁解牛来阐述此层道理:“更有异术者,庖丁解牛,游刃理间,故能历久其刃如新。夫数犹刃也,易简用之则动中庖丁之理,故能和神爱刃,速而寡尤”(《九章算术》方程术注)。
内容来自www.nseac.com
自刘徽之后,“算经十书”的著者都较注意阐述算理要有明确的思想依据,如四库总目 提要中称:《张丘建算经》之体例,皆设为问答,以参校而中明之,简奥古质,与近求不同,而条理精密,实能深究古人之意。正因为此书注意讲究数学的思想依据,因而对掌握数学知识的来龙去脉很有益处,“故唐代颁之算学,以为专业”。就是在我国近年的中学数学课本中,还列有《张丘建算经》的题目。
此外,“算经十书”中关于数学证明的部分,也讲究要有明确的思想依据。[3]
3.着力于灵活和广泛的应用
中国传统数学十分着力于灵活和广泛的应用。拿“算经十书”最早的一部《周髀算经》来说,东汉末至三国时代的吴国人赵爽曾对《周髀算经》逐段进行详细的注释。在赵爽注释中有这样写道:“禹治洪水,决流江河,望山川之形,定高下之势,除滔天之灾,释昏垫之厄,使东注于海而无侵逆,乃句股之所由生也。”又据《史记•夏本纪》记载,大禹治水时,“陆行乘车,水行乘舟,泥行乘撬,山行乘撵,左准绳,右规矩。”赵爽的注释和《史记》的记载(山东五梁祠画像石中有幅大禹治水图)都说明了我国早期注意从实践中提炼数学知识并将掌握的数学知识应用到实践中去。《周髀算经》中记载的“平矩以正绳,偃矩以望高,覆矩以测深,卧矩以知远。环矩以为圆,合矩以为方”都充分体现了将数学知识(包括数学器具)着力于在实践中应用的思想。我国是一个农业古国,田地面积的量法极需要数学为它提供手段,储囤粮食、建筑城墙、开沟挖渠等都需要有计算体积的方法,如求方田、广田、圭田……的面积,求城、……的体积,都十分需要有一定的数学工具为人们提供解决问题的手段。我国古代很早就推行按亩收税、两税法的赋税制度,兑换、分配的需要以及工商业的发展,促进和加强了将数学知识应用于实践。再从中国封建统治者来看,他们也极需要精确地计算田亩面积,合理安排赋税,来发展封建社会的经济,巩固封建王朝的统治。特别是天文历法,它对于历代统治者来说,都是至关重要的,