论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
摘要:高等数学作为高职教育中一门基础课程,对高职教育的成效起着至关重要的作用。对于高等数学,人们一直关注并采取了一系列的改革研究,根据几年来的教学经验,针对学生的基础水平和专业特点,从教学思想、教学内容、教学方法几方面分析了我院高等数学教学改革。
关键词:高等数学 教学内容 教学方法 改革
教育部在《关于全面提高高等职业教育教学质量的若干意见》中指出高职高专教育人才培养工作的基本思路是:“以教育思想、观念改革为先导,以教学改革为核心,以教学基本建设为重点,注重提高质量,努力办出特色”。
高职教育的教学改革至关重要,而高等数学作为高职教育中一门基础课程,肩负着为学生提供学习后继课程和解决实际问题的数学基础和数学方法的重任,对高职教育的成效起着至关重要的作用。因此,高等数学的改革不容忽视。近几年来,人们对高等数学一直关注并采取了一系列的改革研究,根据几年来的教学经验,我针对我院学生的基础水平和专业特点,从教学思想、教学内容、教学方法和手段等方面分析了我院的高等数学教学改革。
一、从教学思想入手是关键
高等数学是大学生步入大学第一学期的学习任务,绝大部分新生对于大学的学习都处于迷茫、放松的状态,对于高等数学的学习更是存在恐惧感。高等数学与初等数学本质区别是它的理论性和抽象性很强,如果我们教学中按照“定义-定理-证明-练习”这样的模式,直接地对极限、导数这些知识进行讲解,学生只能被动的接受知识,阻碍了学生的学习兴趣。
根据高等数学是客观世界规律的抽象与概括的这一特点,我在教学过程中向学生讲解了这些知识产生的背景和一些数学规律。比如极限的概念,早在两千多年前,我国的惠施就在庄子的《天下篇》中有一句著名的话:“一尺之棰,日取其半,万世不竭”,他提出了无限变小的过程,这是我国古代极限思想的萌芽;公元三世纪,我国数学家刘徽利用圆内接正多边形并让多边形的边数趋于无限来计算圆的面积,这个过程中运用了极限;17世纪,随着微积分应用的更加广泛和深入,极限定义就显得十分迫切和需要;18世纪,数学家们基本上弄清了极限的描述性定义;直到19世纪上半叶,由于对无穷级数的研究,人们对极限概念才有了较明确的认识;1821年柯西提出了极限定义的 方法,后来维尔斯特拉斯(Karl Weierstrass)进一步加工,成为现在的柯西极限定义。经过对极限概念产生和发展的讲解,学生可以理解由如此漫长的岁月形成的极限概念,体会其在微积分这门学科中的重要性。同时这能使学生理解由极限为基础的高等数学和客观世界是相关的,引发学生学习数学的兴趣,调动他们的主观能动性。这样,学生在轻松愉快的环境下摆脱了迷茫,摆脱了为学习而学习的困境。